Yang Wang

From WikiPapers
Jump to: navigation, search

Yang Wang is an author.


Only those publications related to wikis are shown here.
Title Keyword(s) Published in Language DateThis property is a special property in this wiki. Abstract R C
Making More Wikipedians: Facilitating Semantics Reuse for Wikipedia Authoring The Semantic Web English 2008 Wikipedia, a killer application in Web 2.0, has embraced the power of collaborative editing to harness collective intelligence. It can also serve as an ideal Semantic Web data source due to its abundance, influence, high quality and well-structuring. However, the heavy burden of up-building and maintaining such an enormous and ever-growing online encyclopedic knowledge base still rests on a very small group of people. Many casual users may still feel difficulties in writing high quality Wikipedia articles. In this paper, we use RDF graphs to model the key elements in Wikipedia authoring, and propose an integrated solution to make Wikipedia authoring easier based on RDF graph matching, expecting making more Wikipedians. Our solution facilitates semantics reuse and provides users with: 1) a link suggestion module that suggests and auto-completes internal links between Wikipedia articles for the user; 2) a category suggestion module that helps the user place her articles in correct categories. A prototype system is implemented and experimental results show significant improvements over existing solutions to link and category suggestion tasks. The proposed enhancements can be applied to attract more contributors and relieve the burden of professional editors, thus enhancing the current Wikipedia to make it an even better Semantic Web data source. 0 0
Exploit Semantic Information for Category Annotation Recommendation in Wikipedia Natural Language Processing and Information Systems English 2007 Compared with plain-text resources, the ones in “semi-semantic” web sites, such as Wikipedia, contain high-level semantic information which will benefit various automatically annotating tasks on themself. In this paper, we propose a “collaborative annotating” approach to automatically recommend categories for a Wikipedia article by reusing category annotations from its most similar articles and ranking these annotations by their confidence. In this approach, four typical semantic features in Wikipedia, namely incoming link, outgoing link, section heading and template item, are investigated and exploited as the representation of articles to feed the similarity calculation. The experiment results have not only proven that these semantic features improve the performance of category annotating, with comparison to the plain text feature; but also demonstrated the strength of our approach in discovering missing annotations and proper level ones for Wikipedia articles. 0 0