Rianne Kaptein

From WikiPapers
Jump to: navigation, search

Rianne Kaptein is an author.


Only those publications related to wikis are shown here.
Title Keyword(s) Published in Language DateThis property is a special property in this wiki. Abstract R C
Exploiting the category structure of Wikipedia for entity ranking Category structure
Entity ranking
Link structure
Artificial Intelligence English 2013 The Web has not only grown in size, but also changed its character, due to collaborative content creation and an increasing amount of structure. Current Search Engines find Web pages rather than information or knowledge, and leave it to the searchers to locate the sought information within the Web page. A considerable fraction of Web searches contains named entities. We focus on how the Wikipedia structure can help rank relevant entities directly in response to a search request, rather than retrieve an unorganized list of Web pages with relevant but also potentially redundant information about these entities. Our results demonstrate the benefits of using topical and link structure over the use of shallow statistics. Our main findings are the following. First, we examine whether Wikipedia category and link structure can be used to retrieve entities inside Wikipedia as is the goal of the INEX (Initiative for the Evaluation of XML retrieval) Entity Ranking task. Category information proves to be a highly effective source of information, leading to large and significant improvements in retrieval performance on all data sets. Secondly, we study how we can use category information to retrieve documents for ad hoc retrieval topics in Wikipedia. We study the differences between entity ranking and ad hoc retrieval in Wikipedia by analyzing the relevance assessments. Considering retrieval performance, also on ad hoc retrieval topics we achieve significantly better results by exploiting the category information. Finally, we examine whether we can automatically assign target categories to ad hoc and entity ranking queries. Guessed categories lead to performance improvements that are not as large as when the categories are assigned manually, but they are still significant. We conclude that the category information in Wikipedia is a useful source of information that can be used for entity ranking as well as other retrieval tasks. © 2012 Elsevier B.V. All rights reserved. 0 0
Entity ranking using Wikipedia as a pivot Web entity ranking
CIKM English 2010 0 0
Focused search in books and Wikipedia: categories, links and relevance feedback INEX English 2010 0 0
Linking Wikipedia to the web English 2010 We investigate the task of finding links from Wikipedia pages to external web pages. Such external links significantly extend the information in Wikipedia with information from the Web at large, while retaining the encyclopedic organization of Wikipedia. We use a language modeling approach to create a full-text and anchor text runs, and experiment with different document priors. In addition we explore whether social bookmarking site Delicious can be exploited to further improve our performance. We have constructed a test collection of 53 topics, which are Wikipedia pages on different entities. Our findings are that the anchor text index is a very effective method to retrieve home pages. Url class and anchor text length priors and their combination leads to the best results. Using Delicious on its own does not lead to very good results, but it does contain valuable information. Combining the best anchor text run and the Delicious run leads to further improvements. 0 0
Using anchor text, spam filtering and wikipedia for web search and entity ranking NIST Special Publication English 2010 In this paper, we document our efforts in participating to the TREC 2010 Entity Ranking and Web Tracks. We had multiple aims: For the Web Track we wanted to compare the effectiveness of anchor text of the category A and B collections and the impact of global document quality measures such as PageRank and spam scores. We find that documents in ClueWeb09 category B have a higher probability of being retrieved than other documents in category A. In ClueWeb09 category B, spam is mainly an issue for full-text retrieval. Anchor text suffers little from spam. Spam scores can be used to filter spam but also to find key resources. Documents that are least likely to be spam tend to be high-quality results. For the Entity Ranking Track, we use Wikipedia as a pivot to find relevant entities on the Web. Using category information to retrieve entities within Wikipedia leads to large improvements. Although we achieve large improvements over our baseline run that does not use category information, our best scores are still weak. Following the external links onWikipedia pages to find the homepages of the entities in the ClueWeb collection, works better than searching an anchor text index, and combining the external links with searching an anchor text index. 0 0
Finding entities in wikipedia using links and categories Lecture Notes in Computer Science English 2009 In this paper we describe our participation in the INEX Entity Ranking track. We explored the relations between Wikipedia pages, categories and links. Our approach is to exploit both category and link information. Category information is used by calculating distances between document categories and target categories. Link information is used for relevance propagation and in the form of a document link prior. Both sources of information have value, but using category information leads to the biggest improvements. 0 0
Result diversity and entity ranking experiments: Anchors, links, text and Wikipedia NIST Special Publication English 2009 In this paper, we document our efforts in participating to the TREC 2009 Entity Ranking and Web Tracks. We had multiple aims: For the Web Track's Adhoc task we experiment with document text and anchor text representation, and the use of the link structure. For the Web Track's Diversity task we experiment with using a top down sliding window that, given the top ranked documents, chooses as the next ranked document the one that has the most unique terms or links. We test our sliding window method on a standard document text index and an index of propagated anchor texts. We also experiment with extreme query expansions by taking the top n results of the initial ranking as multi-faceted aspects of the topic to construct n relevance models to obtain n sets of results. A final diverse set of results is obtained by merging the n results lists. For the Entity Ranking Track, we also explore the effectiveness of the anchor text representation, look at the co-citation graph, and experiment with using Wikipedia as a pivot. Our main findings can be summarized as follows: Anchor text is very effective for diversity. It gives high early precision and the results cover more relevant sub-topics than the document text index. Our baseline runs have low diversity, which limits the possible impact of the sliding window approach. New link information seems more effective for diversifying text-based search results than the amount of unique terms added by a document. In the entity ranking task, anchor text finds few primary pages, but it does retrieve a large number of relevant pages. Using Wikipedia as a pivot results in large gains of P10 and NDCG when only primary pages are considered. Although the links between the Wikipedia entities and pages in the Clueweb collection are sparse, the precision of the existing links is very high. 0 0
Using links to classify wikipedia pages Lecture Notes in Computer Science English 2009 This paper contains a description of experiments for the 2008 INEX XML-mining track. Our goal for the XML-mining track is to explore whether we can use link information to improve classification accuracy. Our approach is to propagate category probabilities over linked pages. We find that using link information leads to marginal improvements over a baseline that uses a Naive Bayes model. For the initially misclassified pages, link information is either not available or contains too much noise. 0 0
Using wikipedia categories for ad hoc search Ad hoc retrieval
Category information
SIGIR English 2009 0 0