No free lunch: Brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity

From WikiPapers
Jump to: navigation, search

No free lunch: Brute force vs. locality-sensitive hashing for cross-lingual pairwise similarity is a 2011 conference paper written in English by Ture F., Elsayed T., Lin J. and published in SIGIR'11 - Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.

[edit] Abstract

This work explores the problem of cross-lingual pairwise similarity, where the task is to extract similar pairs of documents across two different languages. Solutions to this problem are of general interest for text mining in the multilingual context and have specific applications in statistical machine translation. Our approach takes advantage of cross-language information retrieval (CLIR) techniques to project feature vectors from one language into another, and then uses locality-sensitive hashing (LSH) to extract similar pairs. We show that effective cross-lingual pairwise similarity requires working with similarity thresholds that are much lower than in typical monolingual applications, making the problem quite challenging. We present a parallel, scalable MapReduce implementation of the sort-based sliding window algorithm, which is compared to a brute-force approach on German and English Wikipedia collections. Our central finding can be summarized as "no free lunch": there is no single optimal solution. Instead, we characterize effectiveness-efficiency tradeoffs in the solution space, which can guide the developer to locate a desirable operating point based on application- and resource-specific constraints.

[edit] References

This section requires expansion. Please, help!

Cited by

Probably, this publication is cited by others, but there are no articles available for them in WikiPapers. Cited 4 time(s)