Jyrki Wallenius

From WikiPapers
Jump to: navigation, search

Jyrki Wallenius is an author.

Publications

Only those publications related to wikis are shown here.
Title Keyword(s) Published in Language DateThis property is a special property in this wiki. Abstract R C
Concept-based document classification using Wikipedia and value function Journal of the American Society for Information Science and Technology English 2011 In this article, we propose a new concept-based method for document classification. The conceptual knowledge associated with the words is drawn from Wikipedia. The purpose is to utilize the abundant semantic relatedness information available in Wikipedia in an efficient value function-based query learning algorithm. The procedure learns the value function by solving a simple linear programming problem formulated using the training documents. The learning involves a step-wise iterative process that helps in generating a value function with an appropriate set of concepts (dimensions) chosen from a collection of concepts. Once the value function is formulated, it is utilized to make a decision between relevance and irrelevance. The value assigned to a particular document from the value function can be further used to rank the documents according to their relevance. Reuters newswire documents have been used to evaluate the efficacy of the procedure. An extensive comparison with other frameworks has been performed. The results are promising. 0 0
Semantic Content Filtering with Wikipedia and Ontologies English 2010 The use of domain knowledge is generally found to improve query efficiency in content filtering applications. In particular, tangible benefits have been achieved when using knowledge-based approaches within more specialized fields, such as medical free texts or legal documents. However, the problem is that sources of domain knowledge are time-consuming to build and equally costly to maintain. As a potential remedy, recent studies on Wikipedia suggest that this large body of socially constructed knowledge can be effectively harnessed to provide not only facts but also accurate information about semantic concept-similarities. This paper describes a framework for document filtering, where Wikipedia's concept-relatedness information is combined with a domain ontology to produce semantic content classifiers. The approach is evaluated using Reuters RCV1 corpus and TREC-11 filtering task definitions. In a comparative study, the approach shows robust performance and appears to outperform content classifiers based on Support Vector Machines (SVM) and C4.5 algorithm. 17 0