Hua-Jun Zeng

From WikiPapers
Jump to: navigation, search

Hua-Jun Zeng is an author.

Publications

Only those publications related to wikis are shown here.
Title Keyword(s) Published in Language DateThis property is a special property in this wiki. Abstract R C
Using Wikipedia knowledge to improve text classification Text classification
Thesaurus
Wikipedia
Knowl. Inf. Syst. English 2009 Text classification has been widely used to assist users with the discovery of useful information from the Internet. However, traditional classification methods are based on the {œBag} of Words? {(BOW)} representation, which only accounts for term frequency in the documents, and ignores important semantic relationships between key terms. To overcome this problem, previous work attempted to enrich text representation by means of manual intervention or automatic document expansion. The achieved improvement is unfortunately very limited, due to the poor coverage capability of the dictionary, and to the ineffectiveness of term expansion. In this paper, we automatically construct a thesaurus of concepts from Wikipedia. We then introduce a unified framework to expand the {BOW} representation with semantic relations (synonymy, hyponymy, and associative relations), and demonstrate its efficacy in enhancing previous approaches for text classification. Experimental results on several data sets show that the proposed approach, integrated with the thesaurus built from Wikipedia, can achieve significant improvements with respect to the baseline algorithm. 0 0
Enhancing text clustering by leveraging Wikipedia semantics English 2008 Most traditional text clustering methods are based on "bag of words" (BOW) representation based on frequency statistics in a set of documents. BOW, however, ignores the important information on the semantic relationships between key terms. To overcome this problem, several methods have been proposed to enrich text representation with external resource in the past, such as WordNet. However, many of these approaches suffer from some limitations: 1) WordNet has limited coverage and has a lack of effective word-sense disambiguation ability; 2) Most of the text representation enrichment strategies, which append or replace document terms with their hypernym and synonym, are overly simple. In this paper, to overcome these deficiencies, we first propose a way to build a concept thesaurus based on the semantic relations (synonym, hypernym, and associative relation) extracted from Wikipedia. Then, we develop a unified framework to leverage these semantic relations in order to enhance traditional content similarity measure for text clustering. The experimental results on Reuters and OHSUMED datasets show that with the help of Wikipedia thesaurus, the clustering performance of our method is improved as compared to previous methods. In addition, with the optimized weights for hypernym, synonym, and associative concepts that are tuned with the help of a few labeled data users provided, the clustering performance can be further improved. 0 0