Detection of Text Quality Flaws as a One-class Classification Problem

From WikiPapers
Jump to: navigation, search

Detection of Text Quality Flaws as a One-class Classification Problem is a 2011 conference paper written in English by Maik Anderka, Benno Stein, Nedim Lipka and published in 20th ACM Conference on Information and Knowledge Management (CIKM 11).

[edit] Abstract

For Web applications that are based on user generated content the detection of text quality flaws is a key concern. Our research contributes to automatic quality flaw detection. In particular, we propose to cast the detection of text quality flaws as a one-class classification problem: we are given only positive examples (= texts containing a particular quality flaw) and decide whether or not an unseen text suffers from this flaw. We argue that common binary or multiclass classification approaches are ineffective in here, and we underpin our approach by a real-world application: we employ a dedicated one-class learning approach to determine whether a given Wikipedia article suffers from certain quality flaws. Since in the Wikipedia setting the acquisition of sensible test data is quite intricate, we analyze the effects of a biased sample selection. In addition, we illustrate the classifier effectiveness as a function of the flaw distribution in order to cope with the unknown (real-world) flaw-specific class imbalances. Altogether, provided test data with little noise, four from ten important quality flaws in Wikipedia can be detected with a precision close to 1.

[edit] References

This section requires expansion. Please, help!

Cited by

Probably, this publication is cited by others, but there are no articles available for them in WikiPapers.


No comments yet. Be first!