Amit Singh

From WikiPapers
Jump to: navigation, search

Amit Singh is an author.


Only those publications related to wikis are shown here.
Title Keyword(s) Published in Language DateThis property is a special property in this wiki. Abstract R C
Entity based translation language model Entity
Language model
Question retrieval
WWW'12 - Proceedings of the 21st Annual Conference on World Wide Web Companion English 2012 Bridging the lexical gap between the user's question and the question-answer pairs in Q&A archives has been a major challenge for Q&A retrieval. State-of-the-art approaches address this issue by implicitly expanding the queries with additional words using statistical translation models. In this work we extend the lexical word based translation model to incorporate semantic concepts. We explore strategies to learn the translation probabilities between words and the concepts using the Q&A archives and Wikipedia. Experiments conducted on a large scale real data from Yahoo Answers! show that the proposed techniques are promising and need further investigation. Copyright is held by the author/owner(s). 0 0
Towards community discovery in signed collaborative interaction networks Graph clustering
Interaction network
Proceedings - IEEE International Conference on Data Mining, ICDM English 2010 We propose a framework for discovery of collaborative community structure in Wiki-based knowledge repositories based on raw-content generation analysis. We leverage topic modelling in order to capture agreement and opposition of contributors and analyze these multi-modal relations to map communities in the contributor base. The key steps of our approach include (i) modeling of pair wise variable-strength contributor interactions that can be both positive and negative, (ii) synthesis of a global network incorporating all pair wise interactions, and (iii) detection and analysis of community structure encoded in such networks. The global community discovery algorithm we propose outperforms existing alternatives in identifying coherent clusters according to objective optimality criteria. Analysis of the discovered community structure reveals coalitions of common interest editors who back each other in promoting some topics and collectively oppose other coalitions or single authors. We couple contributor interactions with content evolution and reveal the global picture of opposing themes within the self-regulated community base for both controversial and featured articles in Wikipedia. 0 0
Collective annotation of Wikipedia entities in web text English 2009 To take the first step beyond keyword-based search toward entity-based search, suitable token spans ("spots") on documents must be identified as references to real-world entities from an entity catalog. Several systems have been proposed to link spots on Web pages to entities in Wikipedia. They are largely based on local compatibility between the text around the spot and textual metadata associated with the entity. Two recent systems exploit inter-label dependencies, but in limited ways. We propose a general collective disambiguation approach. Our premise is that coherent documents refer to entities from one or a few related topics or domains. We give formulations for the trade-off between local spot-to-entity compatibility and measures of global coherence between entities. Optimizing the overall entity assignment is NP-hard. We investigate practical solutions based on local hill-climbing, rounding integer linear programs, and pre-clustering entities followed by local optimization within clusters. In experiments involving over a hundred manually-annotated Web pages and tens of thousands of spots, our approaches significantly outperform recently-proposed algorithms. 0 0