A Graph-based Approach to Named Entity Categorization in Wikipedia Using Conditional Random Fields

From WikiPapers
Jump to: navigation, search

A Graph-based Approach to Named Entity Categorization in Wikipedia Using Conditional Random Fields is a 2007 conference paper by Y Watanabe, M Asahara, Y Matsumoto and published in Proceedings of the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning (EMNLP-CoNLL).

[edit] Abstract

This paper presents a method for categorizing named entities in Wikipedia. In Wikipedia, an anchor text is glossed in a linked HTML text. We formalize named entity categorization as a task of categorizing anchor texts with linked HTML texts which glosses a named entity. Using this representation, we introduce a graph structure in which anchor texts are regarded as nodes. In order to incorporate HTML structure on the graph, three types of cliques are defined based on the HTML tree structure. We propose a method with Conditional Random Fields (CRFs) to categorize the nodes on the graph. Since the defined graph may include cycles, the exact inference of CRFs is computationally expensive. We introduce an approximate inference method using Treebased Reparameterization (TRP) to reduce computational cost. In experiments, our proposed model obtained significant improvements compare to baseline models that use Support Vector Machines.

[edit] References

This section requires expansion. Please, help!

Cited by

Probably, this publication is cited by others, but there are no articles available for them in WikiPapers.