Entity ranking in Wikipedia: Utilising categories, links and topic difficulty prediction

From WikiPapers
Revision as of 15:03, November 7, 2014 by Nemo bis (Talk | contribs) (CSV import from another resource for wiki stuff; all data is PD-ineligible, abstracts quoted under quotation right. Skipping when title already exists. Sorry for authors and references to be postprocessed, please edit and create redirects.)

(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

This appears to be a duplicate entry.

Publications with the same identifier or URL: Entity ranking in Wikipedia: Utilising categories, links and topic difficulty prediction, Entity ranking in Wikipedia: utilising categories, links and topic difficulty prediction.

Entity ranking in Wikipedia: Utilising categories, links and topic difficulty prediction is a 2010 journal article written in English by Pehcevski J., Thom J.A., Vercoustre A.-M., Naumovski V. and published in Information Retrieval.

[edit] Abstract

Entity ranking has recently emerged as a research field that aims at retrieving entities as answers to a query. Unlike entity extraction where the goal is to tag names of entities in documents, entity ranking is primarily focused on returning a ranked list of relevant entity names for the query. Many approaches to entity ranking have been proposed, and most of them were evaluated on the INEX Wikipedia test collection. In this paper, we describe a system we developed for ranking Wikipedia entities in answer to a query. The entity ranking approach implemented in our system utilises the known categories, the link structure of Wikipedia, as well as the link co-occurrences with the entity examples (when provided) to retrieve relevant entities as answers to the query. We also extend our entity ranking approach by utilising the knowledge of predicted classes of topic difficulty. To predict the topic difficulty, we generate a classifier that uses features extracted from an INEX topic definition to classify the topic into an experimentally pre-determined class. This knowledge is then utilised to dynamically set the optimal values for the retrieval parameters of our entity ranking system. Our experiments demonstrate that the use of categories and the link structure of Wikipedia can significantly improve entity ranking effectiveness, and that topic difficulty prediction is a promising approach that could also be exploited to further improve the entity ranking performance.

[edit] References

This section requires expansion. Please, help!

Cited by

Probably, this publication is cited by others, but there are no articles available for them in WikiPapers. Cited 9 time(s)